Control of the cyclic GMP phosphodiesterase of frog photoreceptor membranes

نویسندگان

  • P R Robinson
  • S Kawamura
  • B Abramson
  • M D Bownds
چکیده

The light-activated cyclic GMP phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed in isolated outer segments suspended in a low-calcium Ringer's solution. Activation occurs over a range of light intensity that also causes a decrease in the permeability, cyclic GMP levels, and GTP levels of isolated outer segments. At intermediate intensities, PDE activity assumes constant intermediate values determined by the rate of rhodopsin bleaching. Washing causes an increase in maximal enzyme activity. Increasing light intensity from darkness to a level bleaching 5 x 10(3) rhodopsin molecules per outer segment per second shifts the apparent Michaelis constant (Km) from 100 to 900 microM. Maximum enzyme velocity increases at least 10-fold. The component that normally regulates this light-induced increase in the Km of PDE is removed by the customary sucrose flotation procedures. The presence of 10(-3) M Ca++ increases the light sensitivity of PDE, and maximal activation is caused by illumination bleaching only 5 x 10(2) rhodopsin molecules per outer segment per second. Calcium acts by increasing enzyme velocity while having little influence on Km. The effect of calcium appears to require a labile component, sensitive to aging of the outer segment preparation. The decrease in the light sensitivity of PDE that can be observed upon lowering the calcium concentration may be related to the desensitization of the permeability change mechanism that occurs during light adaptation of rod photoreceptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light adaption of the cyclic GMP phosphodiesterase of frog photoreceptor membranes mediated by ATP and calcium ions

The light-activated guanosine 3',5'-cyclic monophosphate (cyclic GMP) phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed by measuring the evolution of protons that accompanies cyclic GMP hydrolysis. The validity of this assay has been confirmed by comparison with an isotope assay used in previous studies (Robinson et al. 1980. J. Gen. Physiol. 76: 631-645). The PDE activit...

متن کامل

Calcium and cyclic GMP regulation of light-sensitive protein phosphorylation in frog photoreceptor membranes

In frog photoreceptor membranes, light induces a dephosphorylation of two small proteins and a phosphorylation of rhodopsin. The level of phosphorylation of the two small proteins is influenced by cyclic GMP. Measurement of their phosphorylation as a function of cyclic GMP concentration shows fivefold stimulation as cyclic GMP is increased from 10(-5) to 10(-3) M. This includes the concentratio...

متن کامل

Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes

Frog rod outer segments freshly detached from dark-adapted retinas contain approximately 1-2 molecules of guanosine 3',5'-cyclic monophosphate (cyclic GMP) for every 100 molecules of visual pigment present. This cyclic GMP decays to 5'-GMP, and the conversion is accelerated upon illumination of the outer segments. Bleaching one rhodopsin molecule can lead to the hydrolysis of 1,000-2,000 molecu...

متن کامل

Regulation of cyclic nucleotide concentrations in photoreceptors: an ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light.

Regulation of cyclic nucleotide concentrations in rod outer segments (Rana pipiens) has been further examined. The present studies show that illumination markedly diminishes the concentration of cyclic nucleotides in suspensions of photoreceptor membranes, but the locus of regulation is cyclic nucleotide phosphodiesterase (EC 3.1.4.c) (light-stimulated) and not adenylate cyclase. There is a mar...

متن کامل

A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase.

We have been studying the mechanism by which light and nucleoside triphosphates activate the discmembrane phosphodiesterase (oligonucleate 5'-nucleotidohydrolase; EC 3.1.4.1) in frog rod outer segments. GTP is orders of magnitude more effective than ATP as a cofactor in the light-dependent activation step. GTP and the analogue guanylyl-imidodiphosphate function equally as allosteric activators ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 76  شماره 

صفحات  -

تاریخ انتشار 1980